
Package: epikit (via r-universe)
September 1, 2024

Title Miscellaneous helper tools for epidemiologists

Version 0.1.4

Description Contains tools for formatting inline code, renaming
redundant columns, aggregating age categories, adding survey
weights, finding the earliest date of an event, plotting
z-curves, generating population counts and calculating
proportions with confidence intervals. This is part of the
'R4Epis' project <https://r4epis.netlify.com>.

License GPL-3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports binom, scales, dplyr (>= 1.0.2), rlang, forcats, tidyr (>=
1.0.0), tibble (>= 3.0.0), glue, tidyselect, ggplot2, sf

Suggests testthat (>= 2.1.0), outbreaks, epidict, epitabulate, covr,
knitr, magrittr, rmarkdown

Additional_repositories https://r4epi.github.io/drat

URL https://github.com/R4EPI/epikit, https://r4epis.netlify.com,

https://r4epi.github.io/epikit/

BugReports https://github.com/R4EPI/epikit/issues

VignetteBuilder knitr

Config/Needs/check R4EPI/epidict R4EPI/epitabulate

Repository https://r4epi.r-universe.dev

RemoteUrl https://github.com/r4epi/epikit

RemoteRef HEAD

RemoteSha 6a1fd659966d315d0aadeb126f23b75c7a6b6e62

1

https://r4epis.netlify.com
https://r4epi.github.io/drat
https://github.com/R4EPI/epikit
https://r4epis.netlify.com
https://r4epi.github.io/epikit/
https://github.com/R4EPI/epikit/issues

2 add_weights_cluster

Contents
add_weights_cluster . 2
add_weights_strata . 4
age_categories . 6
fac_from_num . 8
find_breaks . 8
find_date_cause . 9
fmt_ci . 11
fmt_count . 12
gen_polygon . 13
gen_population . 14
rename_redundant . 15
unite_ci . 16
zcurve . 17

Index 19

add_weights_cluster Add a column of cluster survey weights to a data frame.

Description

For use in surveys where you took a sample population out of a larger source population, with a
cluster survey design.

Usage

add_weights_cluster(
x,
cl,
eligible,
interviewed,
cluster_x = NULL,
cluster_cl = NULL,
household_x = NULL,
household_cl = NULL,
ignore_cluster = TRUE,
ignore_household = TRUE,
surv_weight = "surv_weight",
surv_weight_ID = "surv_weight_ID"

)

Arguments

x a data frame of survey data

cl a data frame containing a list of clusters and the number of households in each.

add_weights_cluster 3

eligible the column in x which specifies the number of people eligible for being inter-
viewed in that household. (e.g. the total number of children)

interviewed the column in x which specifies the number of people actually interviewed in
that household.

cluster_x the column in x that indicates which cluster rows belong to. Ignored if ignore_cluster
is TRUE.

cluster_cl the column in cl that lists all possible clusters. Ignored if ignore_cluster is
TRUE.

household_x the column in x that indicates a unique household identifier. Ignored if ignore_household
is TRUE.

household_cl the column in cl that lists the number of households per cluster. Ignored if
ignore_household is TRUE.

ignore_cluster If TRUE (default), set the weight for clusters to be 1. This assumes that your
sample was taken in a way which is a close approximation of a simple random
sample. Ignores inputs from cluster_cl as well as cluster_x.

ignore_household

If TRUE (default), set the weight for households to be 1. This assumes that your
sample of households was takenin a way which is a close approximation of a
simple random sample. Ignores inputs from household_cl and household_x.

surv_weight the name of the new column to store the weights. Defaults to "surv_weight".

surv_weight_ID the name of the new ID column to be created. Defaults to "surv_weight_ID"

Details

Will multiply the inverse chances of a cluster being selected, a household being selected within a
cluster, and an individual being selected within a household.

As follows:

((clusters available) / (clusters surveyed)) *
((households in each cluster) / (households surveyed in each cluster)) *
((individuals eligible in each household) / (individuals interviewed))

In the case where both ignore_cluster and ignore_household are TRUE, this will simply be:

1 * 1 * (individuals eligible in each household) / (individuals interviewed)

Author(s)

Alex Spina, Zhian N. Kamvar, Lukas Richter

Examples

define a fake dataset of survey data
including household and individual information
x <- data.frame(stringsAsFactors=FALSE,

4 add_weights_strata

cluster = c("Village A", "Village A", "Village A", "Village A",
"Village A", "Village B", "Village B", "Village B"),

household_id = c(1, 1, 1, 1, 2, 2, 2, 2),
eligible_n = c(6, 6, 6, 6, 6, 3, 3, 3),
surveyed_n = c(4, 4, 4, 4, 4, 3, 3, 3),

individual_id = c(1, 2, 3, 4, 4, 1, 2, 3),
age_grp = c("0-10", "20-30", "30-40", "50-60", "50-60", "20-30",

"50-60", "30-40"),
sex = c("Male", "Female", "Male", "Female", "Female", "Male",

"Female", "Female"),
outcome = c("Y", "Y", "N", "N", "N", "N", "N", "Y")

)

define a fake dataset of cluster listings
including cluster names and number of households
cl <- tibble::tribble(

~cluster, ~n_houses,
"Village A", 23,
"Village B", 42,
"Village C", 56,
"Village D", 38

)

add weights to a cluster sample
include weights for cluster, household and individual levels
add_weights_cluster(x, cl = cl,

eligible = eligible_n,
interviewed = surveyed_n,
cluster_cl = cluster, household_cl = n_houses,
cluster_x = cluster, household_x = household_id,
ignore_cluster = FALSE, ignore_household = FALSE)

add weights to a cluster sample
ignore weights for cluster and household level (set equal to 1)
only include weights at individual level
add_weights_cluster(x, cl = cl,

eligible = eligible_n,
interviewed = surveyed_n,
cluster_cl = cluster, household_cl = n_houses,
cluster_x = cluster, household_x = household_id,
ignore_cluster = TRUE, ignore_household = TRUE)

add_weights_strata Add a column of stratified survey weights to a data frame. For use
in surveys where you took a sample population out of a larger source
population, with a simple-random or stratified survey design.

add_weights_strata 5

Description

Creates weight based on dividing stratified population counts from the source population by sur-
veyed counts in the sample population.

Usage

add_weights_strata(
x,
p,
...,
population = population,
surv_weight = "surv_weight",
surv_weight_ID = "surv_weight_ID"

)

Arguments

x a data frame of survey data

p a data frame containing population data for groups in ...

... shared grouping columns across both x and p. These are used to match the
weights to the correct subset of the population.

population the column in p that defines the population numbers

surv_weight the name of the new column to store the weights. Defaults to "surv_weight".

surv_weight_ID the name of the new ID column to be created. Defaults to "surv_weight_ID"

Author(s)

Zhian N. Kamvar Alex Spina Lukas Richter

Examples

define a fake dataset of survey data
including household and individual information
x <- data.frame(stringsAsFactors=FALSE,

cluster = c("Village A", "Village A", "Village A", "Village A",
"Village A", "Village B", "Village B", "Village B"),

household_id = c(1, 1, 1, 1, 2, 2, 2, 2),
eligibile_n = c(6, 6, 6, 6, 6, 3, 3, 3),
surveyed_n = c(4, 4, 4, 4, 4, 3, 3, 3),

individual_id = c(1, 2, 3, 4, 4, 1, 2, 3),
age_grp = c("0-10", "20-30", "30-40", "50-60", "50-60", "20-30",

"50-60", "30-40"),
sex = c("Male", "Female", "Male", "Female", "Female", "Male",

"Female", "Female"),
outcome = c("Y", "Y", "N", "N", "N", "N", "N", "Y")

)

define a fake population data set
including age group, sex, counts and proportions

6 age_categories

p <- epikit::gen_population(total = 10000,
groups = c("0-10", "10-20", "20-30", "30-40", "40-50", "50-60"),
proportions = c(0.1, 0.2, 0.3, 0.4, 0.2, 0.1))

make sure col names match survey dataset
p <- dplyr::rename(p, age_grp = groups, sex = strata, population = n)

add weights to a stratified simple random sample
weight based on age group and sex
add_weights_strata(x, p = p, age_grp, sex, population = population)

age_categories Create an age group variable

Description

Create an age group variable

Usage

age_categories(
x,
breakers = NULL,
lower = 0,
upper = NULL,
by = 10,
separator = "-",
ceiling = FALSE,
above.char = "+"

)

group_age_categories(
dat,
years = NULL,
months = NULL,
weeks = NULL,
days = NULL,
one_column = TRUE,
drop_empty_overlaps = TRUE

)

Arguments

x Your age variable

breakers A string. Age category breaks you can define within c(). Alternatively use
"lower", "upper" and "by" to set these breaks based on a sequence.

age_categories 7

lower A number. The lowest age value you want to consider (default is 0)
upper A number. The highest age value you want to consider
by A number. The number of years you want between groups
separator A character that you want to have between ages in group names. The default is

"-" producing e.g. 0-10.
ceiling A TRUE/FALSE variable. Specify whether you would like the highest value in

your breakers, or alternatively the upper value specified, to be the endpoint. This
would produce the highest group of "70-80" rather than "80+". The default is
FALSE (to produce a group of 80+).

above.char Only considered when ceiling == FALSE. A character that you want to have
after your highest age group. The default is "+" producing e.g. 80+

dat a data frame with at least one column defining an age category
years, months, weeks, days

the bare name of the column defining years, months, weeks, or days (or NULL
if the column doesn’t exist)

one_column if TRUE (default), the categories will be joined into a single column called "age_category"
that appends the type of age category used. If FALSE, there will be one column
with the grouped age categories called "age_category" and a second column in-
dicating age unit called "age_unit".

drop_empty_overlaps

if TRUE, unused levels are dropped if they have been replaced by a more fine-
grained definition and are empty. Practically, this means that the first level for
years, months, and weeks are in consideration for being removed via forcats::fct_drop()

Value

a factor representing age ranges, open at the upper end of the range.

a data frame

Examples

if (interactive() && require("dplyr") && require("epidict")) {
withAutoprint({
set.seed(50)
dat <- epidict::gen_data("Cholera", n = 100, org = "MSF")
ages <- dat %>%

select(starts_with("age")) %>%
mutate(age_years = age_categories(age_years, breakers = c(0, 5, 10, 15, 20))) %>%
mutate(age_months = age_categories(age_months, breakers = c(0, 5, 10, 15, 20))) %>%
mutate(age_days = age_categories(age_days, breakers = c(0, 5, 15)))

ages %>%
group_age_categories(years = age_years, months = age_months, days = age_days) %>%
pull(age_category) %>%
table()

})
}

8 find_breaks

fac_from_num create factors from numbers

Description

If the number of unique numbers is five or fewer, then they will simply be converted to factors in
order, otherwise, they will be passed to cut and pretty, preserving the lowest value.

Usage

fac_from_num(x)

Arguments

x a vector of integers or numerics

Value

a factor

Examples

fac_from_num(1:100)
fac_from_num(sample(100, 5))

find_breaks Automatically calculate breaks for a number

Description

Automatically calculate breaks for a number

Usage

find_breaks(n, breaks = 4, snap = 1, ceiling = FALSE)

Arguments

n a number to calcluate breaks for

breaks the maximum number of segments you want to have

snap the number defining where to snap to the nearest factor

ceiling if TRUE, n is included in the breaks

Value

a vector of integers

find_date_cause 9

Examples

find four breaks from 1 to 100
find_breaks(100)

find four breaks from 1 to 123, rounding to the nearest 20
find_breaks(123, snap = 20)

note that there are only three breaks here because of the rounding
find_breaks(123, snap = 25)

Include the value itself
find_breaks(123, snap = 25, ceiling = TRUE)

find_date_cause Find the first date beyond a cutoff in several columns

Description

This function will find the first date in an orderd series of columns that is either before or after a
cutoff date, inclusive.

Usage

find_date_cause(
x,
...,
period_start = NULL,
period_end = NULL,
datecol = "start_date",
datereason = "start_date_reason",
na_fill = "start"

)

find_start_date(
x,
...,
period_start = NULL,
period_end = NULL,
datecol = "start_date",
datereason = "start_date_reason"

)

find_end_date(
x,
...,
period_start = NULL,
period_end = NULL,

10 find_date_cause

datecol = "end_date",
datereason = "end_date_reason"

)

constrain_dates(i, period_start, period_end, boundary = "both")

assert_positive_timespan(x, date_start, date_end)

Arguments

x a data frame

... an ordered series of date columns (i.e. the most important date to be considered
first).

period_start, period_end
for the find_ functions, this should be the name of a column in x that contains
the start/end of the recall period. For constrain_dates, this should be a vector
of dates.

datecol the name of the new column to contain the dates

datereason the name of the column to contain the name of the column from which the date
came.

na_fill one of either "before" or "after" indicating that the new column should only
contain dates before or after the cutoff date.

i a vector of dates

boundary one of "both", "start", or "end". Dates outside of the boundary will be set to NA.
date_start, date_end

column name of a date vector

Examples

d <- data.frame(
s1 = c(as.Date("2013-01-01") + 0:10, as.Date(c("2012-01-01", "2014-01-01"))),
s2 = c(as.Date("2013-02-01") + 0:10, as.Date(c("2012-01-01", "2014-01-01"))),
s3 = c(as.Date("2013-01-10") - 0:10, as.Date(c("2012-01-01", "2014-01-01"))),
ps = as.Date("2012-12-31"),
pe = as.Date("2013-01-09")

)
print(dd <- find_date_cause(d, s1, s2, s3, period_start = ps, period_end = pe))
print(bb <- find_date_cause(d, s1, s2, s3, period_start = ps, period_end = pe,

na_fill = "end",
datecol = "enddate",
datereason = "endcause"))

find_date_cause(d, s3, s2, s1, period_start = ps, period_end = pe)

works
assert_positive_timespan(dd, start_date, pe)

returns a warning because the last date isn't later than the start_date
assert_positive_timespan(dd, start_date, s2)

fmt_ci 11

with(d, constrain_dates(s1, ps, pe))
with(d, constrain_dates(s2, ps, pe))
with(d, constrain_dates(s3, ps, pe))

fmt_ci Helper to format confidence interval for text

Description

This function is mainly used for placing in the text fields of Rmarkdown reports.

Usage

fmt_ci(
e = numeric(),
l = numeric(),
u = numeric(),
digits = 2,
percent = TRUE,
separator = "-"

)

fmt_pci(
e = numeric(),
l = numeric(),
u = numeric(),
digits = 2,
percent = TRUE,
separator = "-"

)

fmt_pci_df(
x,
e = 3,
l = e + 1,
u = e + 2,
digits = 2,
percent = TRUE,
separator = "-"

)

fmt_ci_df(
x,
e = 3,

12 fmt_count

l = e + 1,
u = e + 2,
digits = 2,
percent = TRUE,
separator = "-"

)

Arguments

e the column of the estimate (defaults to the third column). Otherwise, a number

l the column of the lower bound (defaults to the fourth column). Otherwise, a
number

u the column of the upper bound (defaults to the fifth column), otherwise, a num-
ber

digits the number of digits to show

percent if TRUE (default), converts the number to percent, otherwise it’s treated as a raw
value

separator what to separate lower and upper confidence intervals with, default is "-"

x a data frame

Value

a text string in the format of "e\

Examples

cfr <- data.frame(x = 1, y = 2, est = 0.5, lower = 0.25, upper = 0.75)
fmt_pci_df(cfr)

If the data starts at a different column, specify a different number
fmt_pci_df(cfr[-1], 2, d = 1)

It's also possible to provide numbers directly and remove the percent sign.
fmt_ci(pi, pi - runif(1), pi + runif(1), percent = FALSE)

fmt_count Counts and proportions inline

Description

These functions will give proportions for different variables inline.

Usage

fmt_count(x, ...)

gen_polygon 13

Arguments

x a data frame

... an expression or series of expressions to pass to dplyr::filter()

Value

a one-element character vector of the format "n (%)"

Examples

fmt_count(mtcars, cyl > 3, hp < 100)
fmt_count(iris, Species == "virginica")

gen_polygon Fake spatial data as polygons This function returns a polygon which
is split in to regions based on a supplied vector of names

Description

Fake spatial data as polygons This function returns a polygon which is split in to regions based on
a supplied vector of names

Usage

gen_polygon(regions)

Arguments

regions A string of names for each region to label the polygon with

References

The coordinates used for the polygon are of Vienna, Austria. based off government data (see meta-
data)

https://www.data.gv.at/katalog/dataset/stadt-wien_bezirksgrenzenwien
https://www.data.gv.at/katalog/dataset/stadt-wien_bezirksgrenzenwien

14 gen_population

gen_population Generate population counts from estimated population age break-
downs.

Description

This generates based on predefined age groups and proportions, however you could also define these
yourself.

Usage

gen_population(
total_pop = 1000,
groups = c("0-4", "5-14", "15-29", "30-44", "45+"),
strata = c("Male", "Female"),
proportions = c(0.079, 0.134, 0.139, 0.082, 0.066),
counts = NULL,
tibble = TRUE

)

Arguments

total_pop The overal population count of interest - the default is 1000 people

groups A character vector of groups - the default is set for age groups: c("0-4","5-
14","15-29","30-44","45+")

strata A character vector for stratifying groups - the default is set for gender: c("Male",
"Female")

proportions A numeric vector specifying the proportions (as decimals) for each group of the
total_pop. The default repeats c(0.079, 0.134, 0.139, 0.082, 0.067) for strata.
However you can change this manually, make sure to have the length equal to
groups times strata (or half thereof). These defaults are based of MSF general
emergency intervention standard values.

counts A numeric vector specifying the counts for each group. The default is NULL
- as most often proportions above will be used. If is not NULL then total_pop
and proportions will be ignored. Make sure the length of this vector is equal
to groups times strata (or if it is half then it will repeat for each strata). For
reference, the MSF general emergency intervention standard values are c(7945,
13391, 13861, 8138, 6665) based on above groups for a 100,000 person popu-
lation.

tibble Return data as a tidyverse tibble (default is TRUE)

Examples

get population counts based on proportion, unstratified
gen_population(groups = c(1, 2, 3, 4),

strata = NULL,

rename_redundant 15

proportions = c(0.3, 0.2, 0.4, 0.1))

get population counts based on proportion, stratified
gen_population(groups = c(1, 2, 3, 4),

strata = c("a", "b"),
proportions = c(0.3, 0.2, 0.4, 0.1))

get population counts based on counts, unstratified
gen_population(groups = c(1, 2, 3, 4),

strata = NULL,
counts = c(20, 10, 30, 40))

get population counts based on counts, stratified
gen_population(groups = c(1, 2, 3, 4),

strata = c("a", "b"),
counts = c(20, 10, 30, 40))

get population counts based on counts, stratified - type out counts
for each group and strata
gen_population(groups = c(1, 2, 3, 4),

strata = c("a", "b"),
counts = c(20, 10, 30, 40, 40, 30, 20, 20))

rename_redundant Cosmetically relabel all columns that contains a certain pattern

Description

These function are only to be used cosmetically before kable and will likely return a data frame
with duplicate names.

Usage

rename_redundant(x, ...)

augment_redundant(x, ...)

Arguments

x a data frame
... a series of keys and values to replace columns that match specific patterns.

Details

• rename_redundant fully replaces any column names matching the keys
• augment_redundant will take a regular expression and rename columns via gsub().

Value

a data frame.

16 unite_ci

Author(s)

Zhian N. Kamvar

Examples

df <- data.frame(
x = letters[1:10],
`a n` = 1:10,
`a prop` = (1:10) / 10,
`a deff` = round(pi, 2),
`b n` = 10:1,
`b prop` = (10:1) / 10,
`b deff` = round(pi * 2, 2),
check.names = FALSE

)
df
print(df <- rename_redundant(df, "%" = "prop", "Design Effect" = "deff"))
print(df <- augment_redundant(df, " (n)" = " n$"))

unite_ci Unite estimates and confidence intervals

Description

create a character column by combining estimate, lower and upper columns. This is similar to
tidyr::unite().

Usage

unite_ci(
x,
col = NULL,
...,
remove = TRUE,
digits = 2,
m100 = TRUE,
percent = FALSE,
ci = FALSE,
separator = "-"

)

merge_ci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-")

merge_pci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-")

zcurve 17

Arguments

x a data frame with at least three columns defining an estimate, lower bounds, and
upper bounds.

col the quoted name of the replacement column to create

... three columns to bind together in the order of Estimate, Lower, and Upper.

remove if TRUE (default), the three columns in ... will be replaced by col

digits the number of digits to retain for the confidence interval.

m100 TRUE if the result should be multiplied by 100

percent TRUE if the result should have a percent symbol added.

ci TRUE if the result should include "CI" within the braces (defaults to FALSE)

separator what to separate lower and upper confidence intervals with, default is "-"

e the column of the estimate (defaults to the third column). Otherwise, a number

l the column of the lower bound (defaults to the fourth column). Otherwise, a
number

u the column of the upper bound (defaults to the fifth column), otherwise, a num-
ber

Value

a modified data frame with merged columns or one additional column representing the estimate and
confidence interval

Examples

fit <- lm(100/mpg ~ disp + hp + wt + am, data = mtcars)
df <- data.frame(v = names(coef(fit)), e = coef(fit), confint(fit), row.names = NULL)
names(df) <- c("variable", "estimate", "lower", "upper")
print(df)
unite_ci(df, "slope (CI)", estimate, lower, upper, m100 = FALSE, percent = FALSE)

zcurve Create a curve comparing observed Z-scores to the WHO standard.

Description

Create a curve comparing observed Z-scores to the WHO standard.

Usage

zcurve(x, zscore)

18 zcurve

Arguments

x a data frame

zscore bare name of a numeric vector containing computed zscores

Value

a ggplot2 object that is customisable via the ggplot2 package.

Examples

library("ggplot2")
set.seed(9)
dat <- data.frame(observed = rnorm(204) + runif(1),

skewed = rnorm(204) + runif(1, 0.5)
) # slightly skewed

zcurve(dat, observed) +
labs(title = "Weight-for-Height Z-scores") +
theme_classic()

zcurve(dat, skewed) +
labs(title = "Weight-for-Height Z-scores") +
theme_classic()

Including different groups to facet
dat <- data.frame(

observed = c(rnorm(204) + runif(1), rnorm(204) + runif(1, 0.5)),
groups = rep(c("A", "B"), each = 204),
treat = sample(c('up', 'down'), 408, replace = TRUE)

)
zcurve(dat, observed) +

facet_grid(treat~groups)

Index

add_weights_cluster, 2
add_weights_strata, 4
age_categories, 6
assert_positive_timespan

(find_date_cause), 9
augment_redundant (rename_redundant), 15

constrain_dates (find_date_cause), 9

dplyr::filter(), 13

fac_from_num, 8
find_breaks, 8
find_date_cause, 9
find_end_date (find_date_cause), 9
find_start_date (find_date_cause), 9
fmt_ci, 11
fmt_ci_df (fmt_ci), 11
fmt_count, 12
fmt_pci (fmt_ci), 11
fmt_pci_df (fmt_ci), 11
forcats::fct_drop(), 7

gen_polygon, 13
gen_population, 14
group_age_categories (age_categories), 6
gsub(), 15

merge_ci_df (unite_ci), 16
merge_pci_df (unite_ci), 16

rename_redundant, 15

tidyr::unite(), 16

unite_ci, 16

zcurve, 17

19

	add_weights_cluster
	add_weights_strata
	age_categories
	fac_from_num
	find_breaks
	find_date_cause
	fmt_ci
	fmt_count
	gen_polygon
	gen_population
	rename_redundant
	unite_ci
	zcurve
	Index

