Title: | Report templates and helper functions for applied epidemiology |
---|---|
Description: | Report templates and helper functions for applied epidemiology. |
Authors: | Alexander Spina [aut, cre] |
Maintainer: | Alexander Spina <[email protected]> |
License: | GPL-3 |
Version: | 0.2.3 |
Built: | 2025-02-04 15:25:48 UTC |
Source: | https://github.com/r4epi/sitrep |
Exported functions from epikit
add_weights_cluster( x, cl, eligible, interviewed, cluster_x = NULL, cluster_cl = NULL, household_x = NULL, household_cl = NULL, ignore_cluster = TRUE, ignore_household = TRUE, surv_weight = "surv_weight", surv_weight_ID = "surv_weight_ID" ) add_weights_strata( x, p, ..., population = population, surv_weight = "surv_weight", surv_weight_ID = "surv_weight_ID" ) age_categories( x, breakers = NULL, lower = 0, upper = NULL, by = 10, separator = "-", ceiling = FALSE, above.char = "+" ) assert_positive_timespan(x, date_start, date_end) augment_redundant(x, ...) constrain_dates(i, period_start, period_end, boundary = "both") dots_to_charlist(parent = 1L) fac_from_num(x) find_breaks(n, breaks = 4, snap = 1, ceiling = FALSE) find_date_cause( x, ..., period_start = NULL, period_end = NULL, datecol = "start_date", datereason = "start_date_reason", na_fill = "start" ) find_end_date( x, ..., period_start = NULL, period_end = NULL, datecol = "end_date", datereason = "end_date_reason" ) find_start_date( x, ..., period_start = NULL, period_end = NULL, datecol = "start_date", datereason = "start_date_reason" ) fmt_ci( e = numeric(), l = numeric(), u = numeric(), digits = 2, percent = TRUE, separator = "-" ) fmt_ci_df( x, e = 3, l = e + 1, u = e + 2, digits = 2, percent = TRUE, separator = "-" ) fmt_count(x, ...) fmt_pci( e = numeric(), l = numeric(), u = numeric(), digits = 2, percent = TRUE, separator = "-" ) fmt_pci_df( x, e = 3, l = e + 1, u = e + 2, digits = 2, percent = TRUE, separator = "-" ) gen_polygon(regions) gen_population( total_pop = 1000, groups = c("0-4", "5-14", "15-29", "30-44", "45+"), strata = c("Male", "Female"), proportions = c(0.079, 0.134, 0.139, 0.082, 0.066), counts = NULL, tibble = TRUE ) group_age_categories( dat, years = NULL, months = NULL, weeks = NULL, days = NULL, one_column = TRUE, drop_empty_overlaps = TRUE ) merge_ci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-") merge_pci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-") rename_redundant(x, ...) unite_ci( x, col = NULL, ..., remove = TRUE, digits = 2, m100 = TRUE, percent = FALSE, ci = FALSE, separator = "-" ) zcurve(x, zscore)
add_weights_cluster( x, cl, eligible, interviewed, cluster_x = NULL, cluster_cl = NULL, household_x = NULL, household_cl = NULL, ignore_cluster = TRUE, ignore_household = TRUE, surv_weight = "surv_weight", surv_weight_ID = "surv_weight_ID" ) add_weights_strata( x, p, ..., population = population, surv_weight = "surv_weight", surv_weight_ID = "surv_weight_ID" ) age_categories( x, breakers = NULL, lower = 0, upper = NULL, by = 10, separator = "-", ceiling = FALSE, above.char = "+" ) assert_positive_timespan(x, date_start, date_end) augment_redundant(x, ...) constrain_dates(i, period_start, period_end, boundary = "both") dots_to_charlist(parent = 1L) fac_from_num(x) find_breaks(n, breaks = 4, snap = 1, ceiling = FALSE) find_date_cause( x, ..., period_start = NULL, period_end = NULL, datecol = "start_date", datereason = "start_date_reason", na_fill = "start" ) find_end_date( x, ..., period_start = NULL, period_end = NULL, datecol = "end_date", datereason = "end_date_reason" ) find_start_date( x, ..., period_start = NULL, period_end = NULL, datecol = "start_date", datereason = "start_date_reason" ) fmt_ci( e = numeric(), l = numeric(), u = numeric(), digits = 2, percent = TRUE, separator = "-" ) fmt_ci_df( x, e = 3, l = e + 1, u = e + 2, digits = 2, percent = TRUE, separator = "-" ) fmt_count(x, ...) fmt_pci( e = numeric(), l = numeric(), u = numeric(), digits = 2, percent = TRUE, separator = "-" ) fmt_pci_df( x, e = 3, l = e + 1, u = e + 2, digits = 2, percent = TRUE, separator = "-" ) gen_polygon(regions) gen_population( total_pop = 1000, groups = c("0-4", "5-14", "15-29", "30-44", "45+"), strata = c("Male", "Female"), proportions = c(0.079, 0.134, 0.139, 0.082, 0.066), counts = NULL, tibble = TRUE ) group_age_categories( dat, years = NULL, months = NULL, weeks = NULL, days = NULL, one_column = TRUE, drop_empty_overlaps = TRUE ) merge_ci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-") merge_pci_df(x, e = 3, l = e + 1, u = e + 2, digits = 2, separator = "-") rename_redundant(x, ...) unite_ci( x, col = NULL, ..., remove = TRUE, digits = 2, m100 = TRUE, percent = FALSE, ci = FALSE, separator = "-" ) zcurve(x, zscore)
epikit::add_weights_cluster()
, epikit::add_weights_strata()
,
epikit::age_categories()
, epikit::assert_positive_timespan()
,
epikit::augment_redundant()
,
epikit::constrain_dates()
, epikit::dots_to_charlist()
,
epikit::fac_from_num()
, epikit::find_breaks()
,
epikit::find_date_cause()
, epikit::find_end_date()
,
epikit::find_start_date()
, epikit::fmt_ci()
,
epikit::fmt_ci_df()
, epikit::fmt_count()
, epikit::fmt_pci()
,
epikit::fmt_pci_df()
, epikit::group_age_categories()
,
epikit::merge_ci_df()
, epikit::merge_pci_df()
,
epikit::rename_redundant()
,
epikit::unite_ci()
, epikit::zcurve()
Functions re-exported from apyramid
age_pyramid
age_pyramid
An object of class function
of length 1.
apyramid functions:
apyramid::age_pyramid()
: Plot a population pyramid (age-sex) from a dataframe
Functions re-exported from epitabulate
attack_rate( cases, population, conf_level = 0.95, multiplier = 100, mergeCI = FALSE, digits = 2 )
attack_rate( cases, population, conf_level = 0.95, multiplier = 100, mergeCI = FALSE, digits = 2 )
epitabulate functions:
epitabulate::add_ar()
: a gtsummary wrapper for epitabulate::attack_rate()
epitabulate::add_cfr()
: a gtsummary wrapper for
epitabulate::case_fatality_rate()
epitabulate::add_crosstabs()
: a gtsummary wrapper to add counts to
a gtsummary::tbl_uvregression()
epitabulate::add_mr()
: a gtsummary wrapper for epitabulate::mortality_rate()
epitabulate::gt_mh_odds()
: a gtsummary wrapper for stratified
univariate regression and mantel-haenszel estimates
epitabulate::gt_remove_stat()
: a gtsummary wrapper to remove variables
from a gtsummary table
epitabulate::tab_linelist()
: tabulate linelist data
epitabulate::tab_survey()
: tabulate survey data
epitabulate::tab_univariate()
: caluclate odds, risk, and incidence risk
ratios for multiple variables from linelist data.
epitabulate::data_frame_from_2x2()
: convert a 2x2(x2) table to a data
frame clearly labelling the (un)exposed (non)case combinations and their
totals.
Display the available sitrep templates
available_sitrep_templates(categorise = FALSE, ...)
available_sitrep_templates(categorise = FALSE, ...)
categorise |
if |
... |
options to pass on to dir |
a vector of available templates in the sitrep package
available_sitrep_templates(categorise = TRUE) available_sitrep_templates(categorise = TRUE, full.names = TRUE)
available_sitrep_templates(categorise = TRUE) available_sitrep_templates(categorise = TRUE, full.names = TRUE)
Functions re-expored from epidict
msf_dict( disease, name = "MSF-outbreak-dict.xlsx", tibble = TRUE, compact = TRUE, long = TRUE ) msf_dict_survey( disease, name = "MSF-survey-dict.xlsx", tibble = TRUE, compact = TRUE, long = TRUE, template = TRUE ) msf_dict_rename_helper( disease, name, varnames = "data_element_shortname", varnames_type, rmd, template = TRUE, copy_to_clipboard = TRUE ) gen_data( dictionary, varnames = "data_element_shortname", numcases = 300, org = "MSF" )
msf_dict( disease, name = "MSF-outbreak-dict.xlsx", tibble = TRUE, compact = TRUE, long = TRUE ) msf_dict_survey( disease, name = "MSF-survey-dict.xlsx", tibble = TRUE, compact = TRUE, long = TRUE, template = TRUE ) msf_dict_rename_helper( disease, name, varnames = "data_element_shortname", varnames_type, rmd, template = TRUE, copy_to_clipboard = TRUE ) gen_data( dictionary, varnames = "data_element_shortname", numcases = 300, org = "MSF" )
Dictionaries: epidict::msf_dict()
, epidict::msf_dict_survey()
Renaming: epidict::msf_dict_rename_helper()
Generator: epidict::gen_data()